
Kurt Anstreicher Nathan Brixius Jean-Pierre Goux Jeff Linderoth

Solving Large Quadratic Assignment Problems
on Computational Grids.

Abstract. The quadratic assignment problem (QAP) is among the hardest combinatorial optimization prob-
lems. Some instances of size 30 have remained unsolved for decades. The solution of these problems
requires both improvements in mathematical programming algorithms and the utilization of powerful com-
putational platforms. In this article we describe a novel approach to solve QAPs using a state-of-the-art
branch-and-bound algorithm running on a federation of geographically distributed resources known as a
computational grid. Solution of QAPs of unprecedented complexity, including the nug30, kra30b, and tho30
instances, is reported.

Key words. Quadratic assignment problem – branch and bound – computational grid – metacomputing

1. Introduction

The quadratic assignment problem (QAP) is a standard problem in location theory. The
QAP in “Koopmans-Beckmann” form is to

where is the flow between facilities and , is the distance between locations
and , is the fixed cost of assigning facility to location , and if facility
is assigned to location . The problem can alternatively be represented in matrix form

Kurt Anstreicher: Department of Management Sciences, University of Iowa, Iowa City, IA 52242 kurt-
anstreicher@uiowa.edu

Nathan Brixius: Department of Computer Science, University of Iowa, Iowa City, IA 52242 brix-
ius@cs.uiowa.edu

Jean-Pierre Goux: Department of Electrical and Computer Engineering, Northwestern University, and Math-
ematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne,
Illinois 60439, goux@ece.nwu.edu
Jeff Linderoth:Mathematics andComputer Science Division, Argonne National Laboratory, 9700 South Cass
Avenue, Argonne, Illinois 60439,linderot@mcs.anl.gov

Mathematics Subject Classification (1991):/XXX

Research of this author is supported under NSF grant CDA-9726385.

Research of this author is supported by the Mathematical, Information, and Computational Sciences
Division subprogramof the Office of Advanced Scientific Computing Research, U. S. Department of Energy,
under Contract W-31-109-Eng-38 and under NSF grant CDA-9726385.

2 Kurt Anstreicher et al.

as

where denotes the trace of a matrix, is the set of permutationmatrices, and
if facility is assigned to location . Throughout we assume that and are

symmetric. Well-known applications for the QAP include the layout of manufacturing
facilities and hospitals, and ergonomic design. For recent surveys on the QAP see [6,
44].

The QAP is NP-hard, and in practice has proven to be one of the hardest discrete
optimization problems to solve to optimality. Problems of size 20 are challenging,
and problems with 25 have been until very recently the practical limit for exact
solution techniques. A variety of heuristics for QAP have been studied, including tabu
search [48], simulated annealing [49], GRASP [45], and ant systems [15]. These meth-
ods often produce optimal or near-optimal solutions, but their performance can be quite
variable (see for example Tables 2 and 4 in [15]).

Most exact solutionmethods for the QAP have been of the branch and bound (B&B)
type. A polyhedral approach to the QAP has also been considered [30,43], but at this
point is not competitive with B&B methods. A crucial factor in the performance of
B&B algorithms for the QAP is the choice of lower-bounding method. A variety of
lower-bounding techniques are known, including the Gilmore-Lawler Bound (GLB),
bounds based on linear programming (LP) and dual-LP relaxations, bounds based on
eigenvalues, and semidefinite programming (SDP) bounds. Most successful B&B im-
plementations have used the GLB [11,40], which is easy to compute but unfortunately
tends to deteriorate in quality as the dimension increases. The LP [46] and SDP [51]
bounds are typically tighter on large problems, but can be prohibitively expensive for
use in B&B. For implementation in a B&B algorithm the relationship between the qual-
ity of a bound and its computational cost is extremely important, as is the quality of the
branching information that bound computations provide.

A new convex quadratic programming bound (QPB) for the QAP was introduced in
[1], and incorporated into a complete B&B algorithm in [4] (see also [3]). The QPB is
based on the projected eigenvalue bound PB of [23], and uses an SDP characterization
of a basic eigenvalue bound from [2]. The QPB typically provides better bound quality
than the GLB and PB bounds, but at lower computational cost than LP or SDP bounds.
The computational results in [4] indicate that for many larger (20) QAPs, the B&B
algorithm based on QPB has state-of-the-art performance, being rivaled only by the
dual-LP based algorithm of Hahn et al. [25,26].

Because of the extreme difficulty of the QAP, exact solution methods have often
been implemented on high-performance computers. In the past ten years a number of
landmark computational results for the QAP have been obtained using parallel process-
ing hardware. The most commonly used benchmark QAPs are the “Nugent” problems,
introduced in 1968 [42]. The original set consisted of problems of size 5, 6, 7, 8, 12,
15, 20 and 30, but instances of several other sizes (14, 16, 17, 18, 21, 22, 24, and 25)
have been constructed over the years by modifying the data from larger problems. The
nug20 problem was first solved on a 16-processor MEIKO computing system in 1995

Solving Large Quadratic Assignment Problems on Computational Grids. 3

[11], and the larger nug21/22 problems were solved two years later on a NEC Cenju-3
[5], using up to 96 processors. The nug25 problem was solved in 1998 [39] using a
collection of hardware that included a 128-processor Paragon XP/S22.

Although traditional parallel processing (super)computers continue to become more
and more powerful, these resources have inherent limitations arising from their expense
and lack of availability. An alternative platform for massively distributed computation
is based on the notion of grid computing [14], also referred to as metacomputing [8]. A
computational grid consists of a potentially large number of geographically dispersed
CPUs linked by a communication medium such as the Internet. The advantage of such
a platform compared to a traditional multiprocessor machine is that a large number of
CPUs may be assembled very inexpensively. The disadvantage is that the availability of
individual machines is variable, and communication between processors may be very
slow.

In this paper we consider a grid computing implementation of the B&B algorithm
for the QAP from [4]. In Section 2 we review the algorithm, and describe extensions to
branching rules from [4] that we employ here. In Section 3 we consider the problem of
estimating the performance of the algorithm on large problems. This issue is important
both for selecting various problem-specific algorithmparameters, and for estimating the
computational resorces that will be required to solve a given instance. In Section 4 we
give some background on grid computing and describe the computational resources that
we employ. We make use of the “Master-Worker” parallel computing paradigm, as im-
plemented in the MW class library [19,21]. MW itself utilizes the Condor system [38]
to locate available worker CPUs, and manage the interaction between workers and the
master machine. Using MW/Condor we have assembled a computational grid of over
2500 CPUs that may participate in the solution of a single problem. In Section 5 we
describe details of the MW implementation of our QAP algorithm, MWQAP, that have a
significant impact on its distributed-processing performance. In Section 6 we give com-
putational results on a number of previously-unsolved large QAPs from QAPLIB [7],
including the nug30 problem. For the solution of nug30 an average of 650 worker ma-
chines were utilized over a one-week period, providing the equivalent of almost 7 years
of computation on a single HP9000 C3000 workstation. The computations to solve an-
other problem, the tho30 QAP, were the equivalent of over 15 years of computation on
a single C3000. To our knowledge these are among the most extensive computations
ever performed to solve discrete optimization problems to optimality.
Notation.We use to denote the trace of a matrix. If and are matrices then

, is the Kronecker product of and , and is the
vector formed by “stacking” the columns of in the natural order. We use to denote
a vector with each component equal to one. The cardinality of a set is denoted .
For convenience we let the name of an optimization problem, like , also
refer to the optimal value of the problem.

2. The branch-and-bound algorithm

The parallel B&B algorithm developed here is based on the serial algorithm described
in [4]. The algorithm of [4] uses a quadratic programming lower bound for the QAP

4 Kurt Anstreicher et al.

introduced in [1]. The quadratic programming bound for is of the form

where . Let be a matrix whose columns are an
orthonormal basis for the nullspace of . The matrices and , and constant , are
obtained from the spectral decompositions of and . By construction
is positive semidefinite on the nullspace of the equality constraints ,
so computing QPB requires the solution of a convex quadratic programming problem.
QPB is closely related to the projected eigenvalue bound PB of [23], and by construction

. See [1] for details.
A computational approach for QPB based on the Frank-Wolfe (FW) algorithm [41]

is described in [4]. The FW algorithm is known to have poor asymptotic performance,
but in the the context of QPB is attractive because the computation required at each
iteration is dominated by a single matrix multiplication and the solution of a dense
linear assignment problem. See [4] for details. The FW algorithm produces a lower
bound and nonnegative dual matrix such that

for any permutation matrix . The B&B algorithm of [4] makes extensive use of the
dual matrix in the branching step. Note that if is the objective value of the best
known discrete solution to QAP (i.e. the incumbent value), then implies that

in any optimal solution of QAP. The branching process in [4] uses “polytomic”
branching [40], where child problems are created by either assigning a fixed facility to
all available locations (row branching), or by assigning all available facilities to a fixed
location (column branching). In both cases logic based on can be used to eliminate
child nodes when branching. Several different branching rules are considered in [4],
two of which (Rules 2 and 4) we employ here. We describe these below as they would
be implemented at the root node, using row branching. Any node in the B&B tree
corresponds to a set of fixed assignments, resulting in a smaller QAP over the remaining
facilities and locations on which the implementation of branching is similar. Let

.

Rule 2: Branch on the row that produces the smallest number of children. In the event
of a tie, choose the row with the largest value of , where

.
Rule 4: Let denote the set of rows having the NBEST highest values of .

For each , and , compute a lower bound by forming the reduced prob-
lem corresponding to , and obtaining .
Let be the dual matrix associated with . Let be the maximal row sum of

, and let . Branch on the row having the highest
value of .

Solving Large Quadratic Assignment Problems on Computational Grids. 5

Table 1. A depth-based branching strategy

Rule Depth NFW1 NFW2 NFW3 NBEST UPDATE
4a 2 150 100 50 30 30
4b 4 150 100 25 5 30
2a 6 150 100 – – 30
2b 50 100 75 – – 30

Rule 2 simply minimizes the number of children, and in the case of a tie attempts
to maximize the bounds of the child nodes. Rule 4 uses prospective bound computa-
tions (the) to obtain more information about child bounds before deciding where to
branch. In the general B&B context Rule 4 is an example of a strong branching rule,
see for example [35]. Because of the use of the dual matrices , Rule 4 can also be
viewed as a look-ahead procedure that tries to maximize the bounds of child nodes two
levels deeper in the tree.

Many QAP problems have distance matrices arising from rectangular grids, result-
ing in symmetries that can be used to reduce the number of children. For such a problem
there is a subset of the locations such that the children of the root node can be re-
stricted to , , regardless of the choice of . In addition, there may be
one or more pairs of subsets of locations so that if the set of fixed locations
satisfies , then the children can be restricted to be of the form ,

, regardless of . At a node where symmetry can be exploited we consider only
row branching, and replace the index set with an appropriate . If symmetry is
not present we consider column branching as well as row branching. The modifications
of Rules 2 and 4 to implement column branching are straightforward.

To completely specify a branching rule several parameters must be set. One example
is NBEST, described in Rule 4 above. Other required parameters are:

NFW1: Maximum number of FW iterations used.
NFW2: Maximum number of FW iterations used if node cannot be fathomed.
NFW3: Number of FW iterations for prospective bound computations in Rule 4.
UPDATE: Number of FW iterations between update of matrices , .

In bound computations a maximum of NFW1 Frank-Wolfe iterations are used, but
a node may fathom using fewer iterations. On the other hand the FW algorithm may
determine that it will be impossible to fathom a node, in which case the maximum
number of iterations is reduced to NFW2. The matrices and used to define QPB
are also periodically updated in an effort to improve the lower bound , see [4, Section
3] for details.

In [4] branching rules are combined to form a complete branching strategy based
on the depth of a node in the tree. An example of such a strategy, using only Rules 2
and 4, is given in Table 1. In the table “4a/4b” refers to two uses of rule 4 with different
parameters, similarly for “2a/2b.” The “depth” parameter specifies the maximum depth
on which a given rule is used. Several aspects of the branching strategy in Table 1
are noteworthy. In general the use of a more elaborate branching rule (like Rule 4)
is worthwhile to reduce the size of the tree. However, because of the typical growth
in nodes such a rule becomes computationally more and more expensive as the depth

6 Kurt Anstreicher et al.

Table 2. A branching strategy based on gap and depth

Rule Gap Depth NFW1 NFW2 NFW3 NBEST UPDATE
4a .42 3 150 150 100 30 30
4b .32 5 150 150 50 30 30
4c .18 5 150 100 25 5 30
2a .09 7 150 100 – – 30
2b .04 8 100 75 – – 30
2c 0 50 75 50 – – 30

increases. This cost can be mitigated by decreasing NBEST and NFW3 at intermediate
depths. Eventually the strategy switches to the cheaper branching rule (Rule 2). At
very deep levels, where a high fraction of nodes will fathom and many children are
eliminated, further economy is obtained by reducing NFW1 and NFW2.

In [4] excellent computational results are obtained on problems up to size 24
using depth-based branching strategies. In attempting to solve larger problems, how-
ever, limitations of strategies based entirely on depth became apparent. Because of the
growth in nodes with depth it becomes impractical to use Rule 4 in a depth-based strat-
egy beyond level 4 or 5. However, on larger problems few nodes at this depth are fath-
omed, suggesting that the use of more information than obtained by Rule 2 could be
very beneficial. Examining the distribution of bounds on each level it became clear that
the nodes on a given level are often quite heterogenous. For example, two nodes on level
5 might both fail to fathom, with gaps (incumbent value minus lower bound) equal to
.1 and .7 of the gap at the root, respectively. Intuitively the node with the relative gap
of .7 is much “harder” than the one with a relative gap of .1, and this harder problem
might deserve the use of a more elaborate branching rule, like Rule 4, in an attempt
to increase the bounds of its children as much as possible. This observation led us to
devise branching strategies based on both gap and depth.

Note that when a child node corresponding to setting is created, an estimate
of the lower bound for this node is available from its parent. This estimate is either of
the form (Rule 2), or (Rule 4). We define the relative gap for a
node to be

where is the bound estimate inherited from the node’s parent, is the incumbent
value, and is the lower bound at the root node. In a strategy based on depth and gap
these two values are used together to determine which branching rule and parameters
are applied at a given node. A typical example of such a strategy is illustrated in Table
2. Each rule has associated with it a minimum relative gap and a maximum depth; for
a given node the rules are scanned from the top down (from the most computationally
expensive to the least computationally expensive) until one is found whose minimum
relative gap is below the node’s relative gap , and whose depth cutoff is greater than
or equal to the node’s depth. The advantage of such a strategy compared to the sim-
pler depth-based approach is that computational effort can be more precisely directed
to nodes that most merit it. The main disadvantage is that explicit min-gap parameters
must be chosen in addition to the max-depth parameters. Good values of these pa-

Solving Large Quadratic Assignment Problems on Computational Grids. 7

Table 3. Summary output from solution of nug25

Branching Rule Total
Level 4a 4b 4c 2a 2b 2c Nodes Time
0 1 0 0 0 0 0 1 9
1 1 0 0 0 0 0 6 115
2 0.798 0.117 0.064 0.011 0 0.011 94 2374
3 0.310 0.236 0.263 0.125 0.039 0.028 1853 25410
4 0 0.137 0.338 0.291 0.150 0.084 33475 76038
5 0 0.016 0.170 0.354 0.270 0.189 409466 206104
6 0 0 0 0.323 0.362 0.315 2696219 74940
7 0 0 0 0.274 0.347 0.380 9118149 164240
8 0 0 0 0 0.551 0.449 14970699 187077
9 0 0 0 0 0 1 16800536 149740
10 0 0 0 0 0 1 14056814 101902
11 0 0 0 0 0 1 7782046 46741
12 0 0 0 0 0 1 3355923 16591
13 0 0 0 0 0 1 1217206 4938
14 0 0 0 0 0 1 389522 1313
15 0 0 0 0 0 1 111958 306
16 0 0 0 0 0 1 28709 63
17 0 0 0 0 0 1 6623 12
18 0 0 0 0 0 1 1497 2
19 0 0 0 0 0 1 345 0
20 0 0 0 0 0 1 85 0
21 0 0 0 0 0 1 10 0
22 0 0 0 0 0 1 2 0

Nodes 6.6E2 1.2E4 8.1E4 3.5E6 1.3E7 5.5E7 7.1E7
Time 2.1E4 1.1E5 1.7E5 1.3E5 2.1E5 4.2E5 1.1E6

rameters are problem-specific, and the performance of the algorithm can be relatively
sensitive to the values used (in particular to the parameters for the last use of Rule 4).

In addition to the use of branching strategies based on depth and gap, we made a
number of smaller modifications to the B&B code from [4] to improve its efficiency.
The most significant of these was modifying the integer LAP solver from [29], used on
the FW iterations, to run using floating-point data. The use of a floating-point solver
eliminates the need for the scaling/round-down procedure described in [4, Section 2],
and also improves the quality of the lower bounds. Although the LAP solver itself runs
faster with integer data, we found that the overall performance of the B&B algorithm
was improved using the floating-point solver, especially for larger problems.

When a problem is solved using a branching strategy based on gap and depth, the
B&B code reports a statistical summary of how the different branching rules were used
at different levels of the tree. An example of this output, using the branching strategy in
Table 2 applied to the nug25 problem, is shown in Table 3. Each row reports the fraction
of nodes on a given level where each branching rule was applied. The total number of
nodes, and total CPU seconds, are also reported for each level and each branching rule.
Note that although Rule 4 is used on an extremely small fraction of the nodes (about
0.1%), it accounts for approximately 27.4% of the total CPU time. On large problems
we typically invest up to 40% of the total CPU time using Rule 4 in an attempt to
minimize the size of the tree.

8 Kurt Anstreicher et al.

Additional information collected for each level includes the fraction of nodes fath-
omed, the fraction of possible children eliminated when branching, and the mean and
standard deviation of the inherited relative gap. This information is extremely useful
in determining how a given branching strategy might be modified to improve overall
performance.

3. The branch-and-bound tree estimator

In this section we consider a procedure for estimating the performance of our B&B
algorithmwhen applied to a particular QAP instance. The ability tomake such estimates
is important for two reasons. First, the branching strategies described in the previous
section require the choice of several parameters, such as the gap and depth settings for
the different branching rules. Good values of these settings are problem-specific, and to
evaluate a choice of parameters we need to approximate the algorithm’s performance
without actually solving the problem. Second, we are ultimately interested in solving
problems that are at the limit of what is computationally possible using our available
resources. In such cases it is imperative that before attempting to solve a problem we
have a reasonable estimate of the time that the solution process will require.

A well known procedure due to Knuth [32] can be used to estimate the performance
of tree search algorithms, and in fact has previously been used to estimate the perfor-
mance of B&B algorithms for QAP [5,10]. Let denote a node in a tree , rooted at
. Let be a “cost” associated with node , and let be the

total cost for the tree. For example, if then is the number of nodes
in the tree. Alternatively if is the time required for a search algorithm to process
node then is the total time to search the tree. Let denote the descendants
(or children) of as the tree is traversed from the root . Knuth’s estimation procedure
is as follows:

procedure EstimateCost
, ,

For

If Return C
Else choose at random from

Next

Procedure EstimateCostmakes a random “dive” in the tree, at each node choos-
ing uniformly from the available children until a terminal node (leaf) is reached. The
utility of the procedure stems from the following easily-proved result.

Theorem 1. [32] Let be computed by procedure EstimateCost applied to a tree
. Then .

By Theorem 1 the quantity is an unbiased estimate of . It follows that if
the procedure is applied times, resulting in estimates , then the sample

Solving Large Quadratic Assignment Problems on Computational Grids. 9

Table 4. Actual vs. estimated performance on nug20

Actual Estimated
Level nodes time nodes time

0 1 3.20 1 3.24
1 6 43.18 6 43.22
2 97 219.89 97 217.84
3 1591 601.91 1598 612.46
4 18521 776.27 18763 863.05
5 102674 921.26 106975 944.13
6 222900 1208.09 245746 1459.19
7 221873 795.82 270000 924.53
8 124407 317.92 94878 287.22
9 47930 97.81 0 0.00
10 11721 20.85 0 0.00
11 2509 3.67 0 0.00
12 450 0.65 0 0.00
13 73 0.06 0 0.00
14 5 0.00 0 0.00
15 3 0.00 0 0.00
16 1 0.00 0 0.00
17 1 0.00 0 0.00

Total 754763 5010.58 738066 5354.89

mean should be close to if is sufficiently large. Note that
for B&B algorithms depends on the value of the upper bound, so procedure
EstimateCost can most accurately estimate when an accurate estimate of the
optimal value is known. By making appropriate choices for the cost function we
can obtain estimates for virtually all of the summary statistics associated with our B&B
tree, described at the end of the previous section.

In Table 4 we illustrate the performance of the estimation procedure on the nug20
problem, using 10,000 dives. The table compares estimates for the number of
nodes and time required on each level with the values obtained when the problem is
actually solved using the B&B code. The accuracy of the estimator through level 8
is quite good, in accordance with the typical behavior described by [32]. Note that
although the estimator fails to obtain values for levels 9, this omission is of little
practical consequence since the actual node and time figures drop off very rapidly after
level 8. The errors in the estimates for total time and nodes are -2.2% and +6.9%,
respectively.

In our experience the performance of Knuth’s estimator on small and medium-sized
QAPs is excellent. In applying the procedure to larger (24) problems, however,
serious difficulties arise. The probability of a random dive reaching deep levels of the
tree is very small, but the contribution of these deep levels to the overall nodes, and
time, becomes substantial for larger problems. Assuming that is nonnegative, the
sampling distribution of becomes more and more skewed, with a long right tail.
This situation was already predicted by Knuth, who states [32, p.129] “There is a clear
danger that our estimates will almost always be low, except for rare occasions when
they will be much too high.”

We observe exactly this behavior when the estimation procedure is applied to larger
QAPs. In Figure 1 we illustrate the performace of the estimation procedure (labeled

10 Kurt Anstreicher et al.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0 2 4 6 8 10 12 14 16 18 20 22

Level

No
de
s Est_0

Est_2
Actual

Fig. 1. Performance of estimator on nug25

Est 0) applied to the nug25 problem, using 10,000 dives. Both the estimate and
the actual values are obtained using the parameters in Table 2. The estimator obtains
no values for nodes at levels 10, but the nodes at these levels are a nontrivial
fraction of the total (note the logarithmic scale for the number of nodes). The errors in
the estimates for total nodes and time are -37% and -27%, respectively. These errors
typically worsen as the dimension increases, and for 30 the actual values for
total nodes and time may be two or three times the estimated values. With errors of
this magnitude the estimator becomes essentially useless in trying to decide on good
values for algorithm parameters. It is also worth noting that some previous researchers
have used Knuth’s procedure to estimate the complexity of solving large QAPs, without
being able to evaluate the accuracy of their estimates. As a result we believe that past
work (for example [10]) has tended to underestimate the difficulty of large problems
like nug30.

In addition to noting the potential problems with his estimator, Knuth [32] proposed
a possible solution. By using non-uniform probabilities to choose the child at each
node during a dive, EstimateCost can be induced to follow paths that contribute
more to the actual total cost . For a node at level suppose that

. Assign a probability to each , and choose to equal with
probability . Let be the probability corresponding to the child picked. Knuth
shows that Theorem 1 remains true if the statement in EstimateCost
is replaced by , so the procedure can be applied as before. Note that for
uniform sampling , and the procedure reverts to the original version.

The use of non-uniform probabilities in EstimateCost is an example of impor-
tance sampling. In our context “important” paths are deep ones, so we need a method

Solving Large Quadratic Assignment Problems on Computational Grids. 11

0
500
1000
1500
2000
2500
3000
3500
4000

1 2 3 4 5 6 7 8 9 10 11 12

Depth of Dive

Nu
m

be
r o

f D
iv

es

q=0
q=2

Fig. 2. Dive depths using estimator on nug25

of generating probabilities for children that will bias the search towards deeper paths in
the tree. Intuitively children that have larger gaps will require more branching levels be-
fore fathoming occurs, suggesting the use of probabilities that depend on the gaps. Let

denote the inherited relative gap of a node , as defined in the previous section. If
, we define sampling probabilities

where 0. If 0 the sampling is uniform. Setting 1makes the probability that a
child is chosen proportional to its gap, and increasing futher gives higher probabilities
to children with larger gaps. For QAPs of dimension 24 32 we have obtained
good results using between 1 and 2. As an example, the series labeled “Est 2” in
Figure 1 illustrates the performance of the estimator on nug25, using 2 and
10,000 dives. Note that estimates are now obtained through level 12, three levels deeper
than when using 0. Although the errors in these estimates are greater than those
at lower levels, the values obtained are of considerable use in estimating the overall
performance of the algorithm. The errors in the estimates for total nodes and time using

2 are +10% and -1%, respectively. In Figure 2 we show the distribution of the dive
depths (out of a total of 10,000) for the estimator applied to nug25, using 0 and

2. The effect of biased sampling in increasing the depth of the dives is clear. The
average depth is increased from 5.25 for 0 to 6.62 for 2. For 2 four dives
reached level 11, and one reached level 12.

When trials of Knuth’s estimator are used to estimate a total cost with a
sample mean , one can also compute a sample standard deviation, and sample standard
error of the mean . However may be a poor indicator of the accuracy of as an

12 Kurt Anstreicher et al.

estimate of for large problems, because of the skew in the sampling distribution
of . The use of importance sampling reduces the true standard error , but more
importantly reduces the skew of the distribution so that typical estimates are closer to
the true value .

In addition to the use of importance sampling based on gap estimates we made one
other small modification to the estimation procedure. Rather than begin the dives in Es-
timateCost at the root node, we first run the B&B algorithm in “breadth-first” mode
to generate all nodes at a prescribed depth NBFS, and then initialize EstimateCost
by sampling a node at level NBFS. This is useful for two reasons. First, there is no error
in the node values through level NBFS (and time values through level NBFS-1), and
the variance of estimates for the deeper values is reduced. Second, this strategy avoids
wasteful duplication of the computations at low levels in the tree in the course of the
dives. The latter point is particularly important because we use more expensive branch-
ing rules at the low levels, and the cost of repeating these computations thousands of
times can be nontrivial. We typically choose NBFS to be the highest value so that the
number of nodes is below the estimation sample size ; for QAPs of size 24 32
and 10,000 this usually results in NBFS = 3.

Using our refined version of Knuth’s estimator we were able to obtain estimates
for the performance of our B&B code on a number of unsolved QAPs. For example,
we determined that approximately 5-10 years of CPU time on a single HP9000 C3000
would be required to solve the nug30 problem. This estimate was superior to the pro-
jected time for any previously-known solution method for the QAP, but still indicated
that powerful computational resources would be required to solve nug30 in a reason-
able time. We decided that an implementation of our algorithm on a computational grid
offered the best chance for obtaining these resources.

4. Computational grids

A computational grid or metacomputer is a collection of loosely-coupled, geographi-
cally distributed, heterogenous computing resources. Our focus is on the possibility of
using this collection of resources—in particular, the idle time on such collections—as
an inexpensive platform that can provide significant computing power over long time
periods. A computational grid is similar to a power grid in that the provided resource
is ubiquitous and grid users need not know the source of the provided resource. An
introduction to computational grids is given by Foster and Kessleman [14].

Although computational grids are potentially very powerful and inexpensive, they
have a number of features that may make them difficult to use productively. In particu-
lar, computational grids are:

– Dynamically available – Resources appear during the course of the computation;
– Unreliable – Resources disappear without notice;
– Weakly linked – Communication times between any given pair of processors are
long and unpredictable;

– Heterogeneous – Resources vary in their operational characteristics (memory, pro-
cessor speed, and operating system).

Solving Large Quadratic Assignment Problems on Computational Grids. 13

In all these respects, metacomputing platforms differ substantially from conventional
multiprocessor platforms, such as the IBM-SP or SGI Origin machines, or dedicated
clusters of PCs.

4.1. Grid computing toolkits

In order to harness the power of a computational grid, resource management software
is required. Resource management software detects available processors, determines
when processors leave the computation, matches job requests to available processors,
and executes jobs on available machines. A number of different grid computing toolkits
have been developed that perform these resource management functions [12,22,50].
Our implementation relies on two – Condor [38] and Globus [13].

Most of our efforts rely on the Condor system, which manages distributively-owned
collections of workstations known as Condor pools. A unique and powerful feature of
Condor is that each machine’s owner specifies the conditions under which jobs are
allowed to run. In particular, the default policy is to stop a Condor job when a work-
station’s owner begins using the machine. In this way, Condor jobs only use cycles that
would have otherwise been wasted. Because of the minimal intrusion of the Condor
system, workstation owners are often quite willing to donate their machines, and large
Condor pools can be built.

Another powerful feature of Condor is known as flocking, whereby Condor pools in
different locations are joined together, allowing jobs submitted to one Condor pool to
run on resources in a different pool. The flocked Condor poolsmay be located anywhere
on the Internet.

A drawback of the Condor system is that system software must be installed and
special Condor programs (daemons) must be run in order for a machine to belong to
a Condor pool. Some administrators—in particular administrators of large supercom-
puting platforms—are often unwilling to run Condor daemons. Resource management
for these machines is usually done through a batch scheduling system, where dedicated
reservations for processors are made and accounts are charged for their use. To include
these resources in our computational gridmanaged by Condor, we use a bridge between
Condor and the Globus software toolkit known as Condor glide-in. Using Condor glide-
in, Globus authenticates users on the computing resources, makes processor requests to
the batch scheduling system, and spawns the proper Condor daemons when the proces-
sor request is granted.

By using the tools of flocking and glide-in, we were able to build a federation of
over 2500 CPUs distributed around the globe. Table 5 shows the location and number
of processors in our computational grid, the architecture and operating system of the
processors making up the grid, and the mechanism by which the processors were ac-
cessed. The processors are a mix of networks of workstations, dedicated clusters, and
traditional supercomputing resources.

14 Kurt Anstreicher et al.

Table 5. A computational grid

CPUs Architecture/OS Location Access Method
246 Intel/Linux Wisconsin Main Condor Pool
146 Intel/Solaris “ ” “ ”
133 Sun/Solaris “ ” “ ”
414 Intel/Linux Argonne Glide-in
96 SGI/Irix “ ” “ ”
1024 SGI/Irix NCSA “ ”
16 Intel/Linux “ ” Flocking
45 SGI/Irix “ ” “ ”
190 Intel/Linux Georgia Tech “ ”
94 Intel/Solaris “ ” “ ”
54 Intel/Linux Italy (INFN) “ ”
25 Intel/Linux New Mexico “ ”
12 Sun/Solaris Northwestern “ ”
5 Intel/Linux Columbia U. “ ”
10 Sun/Solaris “ ” “ ”
2510

4.2. The master-worker paradigm

To bring the large federation of resources in a computational grid together to tackle
one large computing problem, we need a convenient way in which to break apart the
computational task and distribute it among the various processors. The parallelization
method that we employ is known as the master-worker paradigm. A master machine
delegates tasks to worker machines, and the workers report the results of these tasks
back to the master. Branch and bound algorithms fit perfectly into the master-worker
paradigm. The master keeps track of unexplored nodes in the search tree and distributes
them to the workers. The workers search their designated nodes of the tree and report
unfathomed nodes back to the master. Many authors have used this centralized control
mechanism for parallelizing B&B algorithms [17].

The master-worker paradigm is also perfectly suited to the dynamic and fault toler-
ant nature of the computational grid. As worker processors become available during the
course of the computation they are assigned tasks. If a worker processor fails, the master
reassigns its task to another worker. In alternative parallel processing structures where
algorithm control information is distributed among the processors, complex mecha-
nisms are needed to recover from the loss of this information when a processor fails
[28].

To implement our parallel B&B algorithm for QAP, we use a software framework
operationalizing the abstractions of the master-worker paradigm called MW. MW is a
set of C++ abstract classes. In order to parallelize an application with MW, the appli-
cation programmer reimplements three abstract base classes—MWTask, MWDriver,
and MWWorker, that define the computing task and the actions that the master and
worker processors take on receiving a task or the result of a task. See [19,21] for a more
complete description of MW. Several grid-enabled numerical optimization solvers have
been built with MW [9,20,36].

MW includes an abstract interface to resource management software (such as Con-
dor) and will automatically (re)assign tasks when processors leave or join the compu-

Solving Large Quadratic Assignment Problems on Computational Grids. 15

tation. MW also has an interface allowing different communication mechanisms. Cur-
rently, communication between master and worker can be done via PVM [16], or using
Condor’s remote system call functionality [37] to write into a series of shared files. The
parallel QAP solver employs the shared file communication mechanism.

Because MW reschedules tasks when the processors running these tasks fail, ap-
plications running on top of MW are fault tolerant in the presence of all processor
failures except for that of the master processor. In order to make computations fully
reliable, MW offers features to periodically checkpoint (or save to disk) the state of
the computation on the master process. MW can then resume the computation from the
checkpointed state if the master process fails. In a computation involving many days of
computation on a large number of machines the checkpointing of the master process is
an important reliability feature.

The heterogeneous and dynamic nature of a computational grid makes application
performance difficult to assess. Standard performance measures such as wall clock time
and cumulative CPU time do not separate application code performance from comput-
ing platform performance. By normalizing the CPU time spent on a given task with
the performance of the corresponding worker, MW aggregates time statistics that are
comparable between runs. The user can register an application-specific benchmark task
that is sent to all workers that join the computational pool. For the parallel QAP solver,
the benchmark task is a small, specific portion of the branch and bound tree to evaluate.
The CPU times from a parallel run can then be normalized to an equivalent time on
any reference machine by simply running the benchmark task on that machine. In ad-
dition to the normalized CPU time statistic , MW collects a number of other statistics
such as the wall clock time , the amount of time worker was available, and the
amount of CPU time spent completing task . At the end of the run, MW reports
useful statistics such as the average number of available workers during the course of
the run ,

and the parallel efficiency of the process ,

In developing the parallel QAP solver, these statistics have proven to be quite valuable
to assess both the sequential and parallel aspects of the application code performance.

5. The grid-enabled QAP solver

Our goal is to develop a parallel QAP solver that can efficiently harness the available
resources of a computational grid. While parallelizing the B&B algorithm of Section 2
is in principle quite simple, we have carefully considered many design choices to best
match a parallel B&B algorithmwith the characteristics of our particular computational
platform. In this section we explain these design choices and show through a suite of
experiments that they lead to an efficient parallel algorithm running on a computational
grid.

16 Kurt Anstreicher et al.

Master Task Pool

Worker A

Worker B

Worker C

Unexplored nodes
sent back to master

Fig. 3. Parallel depth-first oriented search strategy

5.1. Grid computing considerations

As explained in Section 4.2, the master-worker paradigm is well suited to the dynamic
nature of a computational grid. However, given the large number of resources that may
be available on a computational grid, we must ensure that the master-worker paradigm
scales effectively to this size. Algorithm features must be exploited to avoid overwhelm-
ing the master with requests for new tasks, which would reduce the overall efficiency.

To achieve a high parallel efficiency in a computational grid context, our parallel
algorithm should strive to:

(I) keep the arrival rate of worker requests small;
(II) keep the service rate of the master machine large;
(III) avoid large messages;
(IV) achieve load balance.

Items (I) and (II) will minimize master contention, item (III) will reduce the impact
of the computational grid’s poor and unpredictable communication properties, and item
(IV) is a concern of all parallel algorithms.

Employing a parallel depth-first oriented search strategy helps us to attain many of
these goals. The strategy works as follows. An available worker is given the deepest
active node in the master’s list. The worker evaluates the subtree rooted at this node in
a depth-first fashion. If after seconds the worker has not completely evaluated the
subtree, its remaining active nodes are passed back to the master. Figure 3 depicts the
parallel depth-first oriented search strategy. In the figure worker A has returned 3 nodes
to the master, 2 of which have subsequently been processed by workers B and C.

The arrival rate of worker requests is kept small (Goal I) by havingworkers compute
for seconds before reporting their results. The periodic reporting of unfinished

Solving Large Quadratic Assignment Problems on Computational Grids. 17

tasks back to the master helps to balance the load among processors (Goal IV) and also
reduces the amount of work that is lost if a worker processor fails, which increases the
parallel efficiency . In order to keep the service rate of the master large (Goal II), the
list of nodes it manages should be kept small. This is accomplished by two aspects of
the search strategy. First, by sending workers the deepest nodes, they are less likely to
report back many new tasks. Second, by having workers search in a depth-first fashion,
the number of active nodes that the worker reports back to the master is minimized.
Performing depth-first search on the workers also helps to keep the size of the messages
small (Goal III).

It is important to note that in the general B&B context this depth-first oriented strat-
egy could result in a parallel algorithm exploring many more nodes than its sequential
counterpart [34]. In our case, however, this undesirable effect is eliminated by the fact
that a very good (in many cases optimal) solution to each QAP instance that we are
attempting to solve is known. If such a solution is not known, the algorithm can be
adapted in a straightforward manner to quickly find good feasible solutions.

5.2. Tuning the parallel QAP solver

In order to test and improve our grid-enabled parallel QAP solver MWQAP, a suite of
computational experiments using the nug25 QAP were undertaken. The nug25 instance
is itself very challenging, being only a short time ago the limit of what was computation-
ally practical [24]. However, given the efficient algorithm and powerful computational
platform at our disposal, we were able to use the nug25 instance to tune MWQAP for the
solution of even more difficult problems. The computational resources used in our suite
of experiments were the machines running the LINUX operating system in Table 5.
To reduce the random effects of the changing nature of the computing platform, each
experiment consisted of solving nug25 seven times.

With a maximum worker CPU time of 100 seconds, the initial MWQAP
implementation achieved an average parallel efficiency of 41.8% in solving nug25.
Since there are no large synchronous portions in the branch and bound algorithm, this
efficiency is surprisingly low. Examining the logs from these runs, we discovered that
there were a large number of tasks that workers completed very quickly; in other words
many for which was small (see Section 4.2). The distribution of the tasks times
for a typical run of nug25 using this initial implementation is shown as the “Initial”
series in Figure 4. The large number of short tasks leads to contention at the master
processor. As a result workers sit idle waiting for the master to respond, reducing the
overall efficiency. In addition communication time is large relative to the time required
to complete many tasks, again reducing parallel efficiency.

To improve the initial parallelization strategy in MWQAP, the number of fast worker
tasks must be reduced. Fast tasks come from workers returning “easy” nodes of the
B&B tree. An effective parallel search strategy should aim to ensure that workers eval-
uate as many easy nodes of their given subtree as possible. The first modification to
MWQAP was to re-order the child nodes by difficulty, based on relative gap (see Sec-
tion 2) before adding them to the worker’s queue of unprocessed nodes. By altering
the search order to investigate easy nodes first, the average parallel efficiency achieved

18 Kurt Anstreicher et al.

0

50

100

150

200

250

300

[0,.1] (.1,1] (1,10] (10,100] >100

Task Time (seconds)

Nu
m

be
r o

f T
as

ks
 (0

00
)

Initial
w/R
w/R/F1
w/R/F1/F2

Fig. 4. Distribution of task times for MWQAP on nug25

when solving the nug25 instance seven times increased to 66.1%. The distribu-
tion of the task computing times, labeled “w/R” in Figure 4, was also considerably
improved.

Not surprisingly, most fast computing tasks come from nodes that are deep in the
B&B tree. Figure 5 shows the probability that a worker requires less than one CPU
second as a function of the depth of the initial node from the nug25 tree it is given.
Note the large increase in this probability as the depth goes from 5 to 6. To reduce the
number of fast tasks further, the parallel strategy in MWQAP was modified to allow the
workers a finish-up phase. Workers are allowed an additional seconds to pro-
cess all nodes (still via depth-first search) deeper than 5 whose relative gap is
also less than 0.28. (Optimal values for the parameters and are ob-
viously problem-specific. However reasonable values can easily be obtained from the
output of the estimator described in Section 3.) Using both the node re-ordering and the
finish-up strategies, the average efficiency of MWQAP on the nug25 instance increased
to 82.1%. Figure 4 shows the resulting distribution of task execution times, labeled
“w/R/F1.” Note that because 100, task times greater than 100 seconds corre-
spond to the use of the finish-up strategy. Although the finish-up strategy is used on a
relatively modest fraction of the tasks, it results in a very large reduction in the number
of fast tasks.

In an attempt to reduce the fast tasks even further, the finish-up strategy was refined
to allow for an additional period of time , where the parameter was increased
to 6, and was relaxed to 1.0. With the additional finish-up period the average
parallel efficiency of the parallel QAP solver on nug25 increased to 84.8%. Figure 4
shows the resulting task time distribution, labeled “w/R/F1/F2.” The second finish-up
period is used on a very low fraction of tasks (), but results in almost complete
elimination of tasks requiring less than 10 seconds. The simple strategies of intelligently

Solving Large Quadratic Assignment Problems on Computational Grids. 19

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12

Depth of Node

P(
Ta

sk
 T

im
e

<
1

se
c)

Fig. 5. Likelihood of fast tasks for nug25

ordering the search, and allowing finish-up periods for workers to eliminate fast tasks
remaining in their pool of unexplored nodes, virtually eliminated contention and more
than doubled the parallel efficiency.

The fast-task reduction techniques are designed to eliminate contention at the mas-
ter, but this is not sufficient to ensure maximum efficiency. The dependency between
tasks in the B&B algorithm can ultimately lead to situations where workers are sit-
ting idle waiting for other workers to report back their results. In the case of our QAP
solver, this occurs when the master pool is near-empty (having less tasks than partici-
pating workers). In order to keep the master task populated with nodes for workers to
process, we made two other modifications to the search strategy in MWQAP. These are:

1. Reduce the grainsize (by decreasing) when there are less than nodes in the
master task pool.

2. Re-order the master task pool to force workers to explore difficult subtrees, rather
than deep ones, when there are less than nodes in the master task pool.

When there are less than 100 nodes in the master’s task list, is reduced
to 10 seconds. This increases the utilization of resources at the beginning and the end
of the search. When there are less than 3000 nodes remaining in the master’s task
list, workers are given subtrees to explore whose root nodes have the highest relative
gaps. This ensures that the task list does not become empty until the search is complete.
A positive side-effect of this lazy best-first search is that the optimal solution is often
found earlier in the solution procedure, somewhat reducing the total number of nodes
that must be explored. Using the fast task elimination strategies and the worker idle
time reduction strategies, the efficency of the parallel QAP solver was increased to
85.6%.

20 Kurt Anstreicher et al.

Table 6. Performance statistics for MWQAP on nug25

Initial w/R w/R/F1 w/R/F1/F2 Final
74,677,341 71,486,576 72,059,881 71,893,497 71,770,751
(776,194) (1,468,152) (476,303) (213,131) (234,248)
213 211 172 190 185
(12) (4) (29) (10) (17)
8675 5561 4948 4356 4757
(1820) (309) (1521) (312) (323)
205,359 198,717 198,130 195,621 196,523
(2355) (3656) (2795) (1125) (1185)
41.8% 66.1% 82.1% 84.8% 85.6%
(6.79%) (3.68%) (4.63%) (4.30%) (2.11%)

Performance improvements in solving the nug25 instance are summarized in Table
6. For each version of the code, we list the average and standard deviation of each of
the following statistics over seven solution runs: number of nodes , average number
of machines , wall clock time , normalized CPU time , and parallel efficiency .
(Note: The normalized time must be multiplied by the time to perform the benchmark
task to obtain an equivalent time on a given machine. For the HP9000 C3000 the time
to perform the benchmark task is 3.64 seconds, so the equivalent time to solve nug25
on a single C3000 machine is about 7.15E5 seconds, or 8.3 days.) Besides the large
improvement in parallel efficiency achieved between the initial and final MWQAP imple-
mentations, a few other items are of note. First, the variance in nodes arises entirely
from when the optimal solution is obtained. Second, despite the changing nature of the
computational platform and efficiency of the underlying parallel implementation, the
normalized CPU time statistics exhibit relatively low variance. This variance is partic-
ularly low for the last two versions. Third, adding the idle time reduction strategies in
the final version significantly reduces the variance in the parallel performace statistics.

It is worth noting that for the final version of MWQAP the average wall time to solve
nug25, using about 200 processors, is approximately 80 minutes. At this point, MWQAP
exhibits predictably scalable performance and is ready to efficiently provide the CPU
time required to tackle unsolved QAP instances.

6. Computational results on large problems

In the previous sections we explained the design of a powerful sequential branch-and-
bound code for the QAP, and how to implement it efficiently to harness the power of
large computational grids. The resulting code has been used to solve instances of the
QAP unsolved for decades, the most famous among them being the nug30 problem.

In 1968, Nugent, Vollman, and Ruml [42] posed a set of quadratic assignment prob-
lem instances of sizes 5, 6, 7, 8, 12, 15, 20 and 30. The distance matrices for these
problems correspond to Manhattan distances on rectangular grids. Additional instances
have been introduced over the years by removing facilities from larger instances, and
either removing selected locations or using the distance matrix from an appropriately-
sized grid. The Nugent problems are the most-solved set of QAPs, and the solution of

Solving Large Quadratic Assignment Problems on Computational Grids. 21

Table 7. Solution statistics for large QAPs

Time C3000 Workers Pool Parall.
Problem Nodes (Days) Years Ave. Max Factor Eff.
nug27 4.02E8 .69 .18 185 275 96 .91
nug28 2.23E9 3.73 .88 224 528 86 .90
nug30 1.19E10 6.92 6.94 653 1009 366 .92
kra30b 5.14E9 3.79 2.67 462 780 257 .92
kra32 1.67E10 12.26 10.35 576 1079 308 .87
tho30 3.43E10 17.18 17.48 661 1307 371 .89

Table 8. Optimal solutions for large QAPs

Problem Value Optimal Permutation
nug27 5234 23,18,3,1,27,17,5,12,7,15,4,26,8,19,20,2,24,21,14,10,

9,13,22,25,6,16,11
nug28 5166 18,21,9,1,28,20,11,3,13,12,10,19,14,22,15,2,25,16,4,23,

7,17,24,26,5,27,8,6
nug30 6124 14,5,28,24,1,3,16,15,10,9,21,2,4,29,25,22,13,26,17,30,

6,20,19,8,18,7,27,12,11,23
kra30b 91420 23,26,19,25,20,22,11,8,9,14,27,30,12,6,28,24,21,18,1,7,

10,29,13,5,2,17,3,15,4,16
kra32 88900 31,23,18,21,22,19,10,11,15,9,30,29,14,12,17,26,27,28,1,7,

6,25,5,3,8,24,32,13,2,20,4,16
tho30 149936 8,6,20,17,19,12,29,15,1,2,30,11,13,28,23,27,16,22,10,21,

25,24,26,18,3,14,7,5,9,4

the various instances have marked advances in both processor capability and QAP solu-
tion methods. See [24] for an excellent history of these problems. Most results reported
for Nugent problems of size 24 have been based on the GLB; see for example [5,
11,40]. Prior to the work reported here the largest Nugent instance solved to optimality
was the nug25 problem. Nug25 was first solved using the dynamic programming lower
bounding approach of Marzetta and Brüngger [39], and was subsequently solved more
efficiently using the dual-LP approach of Hahn et al. [26].

In Table 7 we report solution statistics for a number of previously-unsolved large
QAPs. In Table 8 we give optimal permutations (assignments of facilities to locations)
for these same problems. For all problems considered here the optimal objective value
is known to be an even integer, and the initial upper bound (incumbent value) was set
equal to BKV+2, where BKV is the best known objective value. With this choice of the
initial upper bound the algorithm must recover an optimal solution of the problem, in
addition to proving optimality.

The “Time” statistic in Table 7 is the total wall time that the master process was
running; time during which the master was shut down is not counted. “C3000 Years”
is the total CPU time, normalized to time on a single HP9000 C3000. The pool factor
is the equivalent number of such machines that would have been required to complete
the job in the given wall time. In each case the B&B algorithm was applied using the
branching strategy from Table 2, with settings of the gap and depth parameters chosen
for the particular problem. Several runs of the estimator described in Section 3 were
made for each problem in an attempt to obtain good parameter choices. The exact pa-

22 Kurt Anstreicher et al.

rameters used for the different problems, and complete solution statistics, are available
on request. For all of these problems the estimated solution time was within 15% of the
actual time, normalized to the C3000.

The first two problems, nug27 and nug28, were created from nug30 by removing
the last 3 (respectively 2) facilities from nug30, and using a distance matrix correspond-
ing to a 3 by 9 (respectively 4 by 7) grid. Since these were new problems we ran several
heuristics, including GRASP [45] and simulated annealing to obtain a good feasible
solution. For both problems the simulated annealing code of Taillard (available from
http://www.eivd.ch/ina/Collaborateurs/etd/) produced the best so-
lution, and this was used as the BKV to initialize the B&B procedure. In both cases this
BKV was proved optimal.

Following the solution of nug28 the large computational grid described in Table
5 was assembled for the solution of the nug30 problem. The nug30 computation was
started on June 8, 2000 at 11:05, using a master machine located in the Condor pool at
the University of Wisconsin-Madison. The computation was initialized using the BKV
from QAPLIB [7], which was ultimately proved optimal. The computation completed
on June 15, at 21:20. In the interim the process was halted five times, twice due to
failures of the resource management software and three times to perform maintenance.
Following each interuption the process was resumed using the checkpointing feature
of MW described in Section 4.2. The progress of the computation was viewed via the
Internet as it happened using the iMW environment described in [18].

In Figure 6 we show the number of worker machines over the course of the nug30
run. As described in Table 7 there were an average of about 650 workers, with a peak
of over 1000. The five interuptions in the solution process are clearly visible. Figure 7
shows the evolution of the size of the master queue during the course of the nug30 com-
putation. The effect of the “lazy best-first” strategy described in Section 5.2 is evident;
the queue size trends downward until the master has 3000 tasks on hand, at which point
the pool is re-sorted to give out more difficult tasks first. This immediately causes the
pool to be re-populated with unprocessed nodes, and the cycle repeats. One remarkable
statistic for the nug30 run is that on average approximately one million linear assign-
ment problems were solved per second during the one-week period.

The problem kra30b arose from a hospital planning application in 1972 [33]. The
related kra30a problem was first solved by Hahn et al. [26]. The flow matrices for these
problems are identical, and the distance matrices are based on 3-dimensional rectangu-
lar grids with unit costs of 50, 50 and 115 for the , , and directions, respectively.
The grid for kra30a is 4 by 4 by 2, with 2 points on opposite corners of one level re-
moved, while kra30b uses a 5 by 3 by 2 grid. See [27] for an interesting discussion of
these problems. In the solution of kra30b we again used the BKV from QAPLIB, but
divided the distance matrix by 5 before solving the problem. (Note that the distance
matrix is still integral after division by 5. For the original data distinct objective val-
ues corresponding to permutations differ by at least ten units.) The BKV was proved
optimal. The fact that kra30b was considerably easier to solve than nug30 (see Table
7) is not surprising given that kra30b has an 8-fold symmetry, compared to the 4-fold
symmetry of nug30. (Recall that the B&B algorithm, as described in Section 2, fully
exploits any symmetry to reduce the number of children created when branching.) The
problem kra32 was formed by using the distance matrix for the complete 4 by 4 by 2

Solving Large Quadratic Assignment Problems on Computational Grids. 23

0

200

400

600

800

1000

6/9 6/10 6/11 6/12 6/13 6/14 6/15

W
or

ke
rs

Time
Fig. 6. Number of workers in nug30 computation

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000 6000 7000 8000

M
as

te
r L

ist
 S

ize

Tasks Completed (00)
Fig. 7. Nodes in master queue during nug30 computation

24 Kurt Anstreicher et al.

grid (resulting in a 16-fold symmetry), and adding 2 dummy facilities. The problem
was initialized with the BKV from kra30a, with the distance matrix again divided by 5.
The BKV was proved optimal, showing for the first time that the choice of grid points
removed to form the kra30a problem is in fact optimal.

The tho30 problem, posed in [49], uses a distance matrix arising from a 3 by 10
grid. From Table 7 it is clear that this problem was substantially more difficult to solve
than the nug30 problem. It is worth noting that the root gap between the BKV and QPB
was approximately 17.1% for tho30, versus 12.4% for nug30 (see [1, Table 1]). For
both problems the best known root bound is obtained using the “triangle decomposition
bound” of [31]; the corresponding gaps are 9% for tho30 and 5.75% for nug30 [7].

With the solutions of the nug30, kra30b, and tho30 problems, all symmetric QAPs
of size 30 in QAPLIB [7], with the exception of the tai25a and tai30a problems,
have now been solved. The “taixxa” problems, from [48] have dense, randomly gen-
erated flow and distance matricies, and as a result have virtually no structure of any
kind. Based on runs of the estimator described in Section 3, the rate with which QPB
increases on these problems as branching occurs is not rapid enough for their solution
using MWQAP to be practical, even with our large computational grid.

Larger unsolved QAPLIB problems include the esc32a/b/c/d/h and ste36a/b/c prob-
lems. The esc32x problems are QAP representations of “semi-assignment” problems,
and as a result have very sparse flow matrices with large blocks of zeros. (The problems
esc32e/f/g, solved in [5], have flow matrices that are almost identically zero.) The best
known bounds for these problems have been obtained using polyhedral methods that
explicitly use the semi-assignment structure [30]. The ste36a/b/c problems are similar
to other grid-based problems such as nug30 and tho30, and arose from a “backboard
wiring” application dating back to 1961 [47]. These problems present an outstanding
open challenge in computational optimization which further advances could soon bring
within reach.

7. Conclusions

Three advances were vital in bringing about the solutions of the large QAP instances
described herein: the development of a new lower bounding technique, an intelligently
engineered branch and bound algorithm using this lower bounding technique, and an
efficient parallel implementation of the branch and bound algorithm on a large compu-
tational grid. In our opinion the potential of future algorithmic advances for the QAP
and other difficult optimization problems can be realized by utilizing the power that
computational grids have to offer. To date this power has been largely untapped. We
hope this demonstration of the synergetic effects of combining improvements in both
algorithms and computing platforms will inspire other optimization researchers to more
fully exploit the power of the computational grid.

Acknowledgements. We are foremost very grateful to Steve Wright of Argonne National Lab and Miron
Livny of the University of Wisconsin for their support of this research, under the auspices of the metaNEOS
project. This large computing effort required the support of many institutions. In particular, we would like to
acknowledge the contributions of the entire Condor andGlobus teams. We would also like to acknowledge the
National Computational Science Alliance under grant number MCA00N015N for providing resources at the

Solving Large Quadratic Assignment Problems on Computational Grids. 25

University of Wisconsin, the NCSA SGI/CRAY Origin2000, and the University of NewMexico/Albuquerque
High Performance Computing Center AltaCluster; the IHPCL at Georgia Tech, supported by a grant from
Intel; and the Italian Istituto Nazionale di Fisica Nucleare (INFN), Columbia University, and Northwestern
University for allowing us access to their Condor pools.

References

1. K.M. Anstreicher and N.W. Brixius. A new bound for the quadratic assignment problembased on convex
quadratic programming. Mathematical Programming, 89:341–357, 2001.

2. K.M Anstreicher and H. Wolkowicz. On Lagrangian relaxation of quadratic matrix constraints. SIAM J.
Matrix Anal. Appl., 22:41–55, 2000.

3. N.W. Brixius. Solving large-scale quadratic assignmentproblems. Ph.D. thesis, Department of Computer
Science, University of Iowa, 2000.

4. N.W. Brixius and K.M. Anstreicher. Solving quadratic assignment problems using convex quadratic
programming relaxations. Optimization Methods and Software. To appear.

5. A. Brüngger, A. Marzetta, J. Clausen, and M. Perregaard. Solving large-scale QAP problems in parallel
with the search library ZRAM. Journal of Parallel and Distributed Computing, 50:157–169, 1998.

6. R.E. Burkhard, E. Çela, P.M. Pardalos, and L.S. Pitsoulis. The quadratic assignment problem. In D.-
Z. Du and P.M Pardalos, editors, Handbook of Combinatorial Optimization, volume 3, pages 241–337.
Kluwer, 1998.

7. R.E. Burkhard, S.E. Karisch, and F. Rendl. QAPLIB - a quadratic assignment problem library. Journal
of Global Optimization, 10:391–403, 1997.

8. C. Catlett and L. Smarr. Metacomputing. Communications of the ACM, 35:44–52, 1992.
9. Q. Chen, M.C. Ferris, and J.T. Linderoth. Fatcop 2.0: Advanced features in an opportunistic mixed
integer programming solver. Annals of Operations Research. To appear.

10. J. Clausen, S.E. Karisch, M. Perregaard, and F. Rendl. On the applicability of lower bounds for solving
rectilinear quadratic assignment problems in parallel. Computational Optimization and Applications,
10:127–147, 1998.

11. J. Clausen and M. Perregaard. Solving large quadratic assignment problems in parallel. Computational
Optimization and Applications, 8:111–127, 1997.

12. G. Fagg, K. Moore, and J. Dongarra. Scalable networked information processing environment (SNIPE).
International Journal on Future Generation Computer Systems, 15:595–605, 1999.

13. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl. J. Supercom-
puter Applications, 11:115–128, 1997. Available as ftp://ftp.globus.org/pub/globus/
papers/globus.ps.gz.

14. I. Foster and C. Kesselman. Computational grids. In I. Foster and C. Kesselman, editors, The Grid:
Blueprint for a New Computing Infrastructure.Morgan Kaufmann, 1998. Chapter 2.

15. L.M. Gambardella, É.D. Taillard, and M. Dorigo. Ant colonies for the quadratic assignment problem.
Journal of the Operational Research Society, 50:167–176, 1999.

16. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel Virtual
Machine. The MIT Press, Cambridge, MA, 1994.

17. B. Gendron and T.G. Crainic. Parallel branch and bound algorithms: Survey and synthesis. Operations
Research, 42:1042–1066, 1994.

18. M. Good and J.-P. Goux. iMW : A web-based problem solving environment for grid computing applica-
tions. Technical report, Department of Electrical and Computer Engineering, Northwestern University,
2000.

19. J.-P Goux, S. Kulkarni, J. Linderoth, and M. Yoder. An enabling framework for master-worker appli-
cations on the computational grid. In Proceedings of the Ninth IEEE International Symposium on High
Performance Distributed Computing, pages 43–50, Los Alamitos, CA, 2000. IEEE Computer Society.

20. J.-P. Goux, S. Leyffer, and J. Nocedal. Solving mixed-integer nonlinear programming problems on
metacomputing platforms. Working paper, Dept. of Electrical and Computer Engineering, Northwestern
University, 1999.

21. J.-P. Goux, J.T. Linderoth, and M.E. Yoder. Metacomputing and the master-worker paradigm. Preprint
ANL/MCS-P792-0200, Mathematics and Computer Science Division, Argonne National Laboratory,
2000.

22. A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey. Legion: An operating system for wide-area
computing. Available as http://legion.virginia.edu/papers/CS-99-12.ps.Z, 1999.

23. S.W. Hadley, F. Rendl, and H. Wolkowicz. A new lower bound via projection for the quadratic assign-
ment problem. Mathematics of Operations Research, 17:727–739, 1992.

26 Kurt Anstreicher et al.: Solving Large Quadratic Assignment Problems on Computational Grids.

24. P.M. Hahn. Progress in solving the Nugent instances of the quadratic assignment problem. Working
Paper, Systems Engineering, University of Pennsylvania, 2000.

25. P.M. Hahn, T. Grant, and N. Hall. A branch-and-bound algorithm for the quadratic assignment problem
based on the Hungarian method. European Journal of Operational Research, 108:629–640, 1998.

26. P.M. Hahn, W.L. Hightower, T.A. Johnson, M. Guignard-Spielberg, and C. Roucairol. Tree elaboration
strategies in branch and bound algorithms for solving the quadratic assignment problem. Technical
report, Systems Engineering, University of Pennsylvania, 1999.

27. P.M. Hahn and J. Krarup. A hospital facility layout problem finally solved. Working paper, Systems
Engineering, University of Pennsylvania, 2000.

28. A. Iamnitchi and I. Foster. A problem-specific fault-tolerance mechanism for asynchronous, distributed
systems. In Proceedings of the International Conference on Parallel Processing 2000, August 2000.

29. R. Jonker andA.Volgenant. A shortest augmenting path algorithm for denseand sparse linear assignment
problems. Computing, 38:325–340, 1987.

30. V. Kaibel. Polyhedral methods for the QAP. In P.M. Pardalos and L. Pitsoulis, editors, Nonlinear
Assignment Problems, pages 1–34. Kluwer Academic Publishers, 1999.

31. S.E. Karisch and F. Rendl. Lower bounds for the quadratic assignment problem via triangle decomposi-
tions. Mathematical Programming, 71:137–152, 1995.

32. D.E. Knuth. Estimating the efficiency of backtrack programs.Mathematics of Computation, 29:121–136,
1975.

33. J. Krarup and P.M. Pruzan. Computer-aided layout design. Mathematical Programming Study, 9:75–94,
1978.

34. T.H. Lai and S. Sahni. Anomalies in parallel branch and bound algorithms. In Proceedings of the 1983
International Conference on Parallel Processing, pages 183–190, 1983.

35. J.T. Linderoth and M.W.P. Savelsbergh. A computational study of branch and bound search strategies
for mixed integer programming. INFORMS Journal on Computing, 11:173–187, 1999.

36. J.T. Linderoth and S.J. Wright. Implementing decomposition algorithms for stochastic programming on
a computational grid. Working paper, MCS Division, Argonne National Lab, 2000.

37. M. Litzkow. Remote Unix - Turning idle workstations into cycle servers. In Proceedings of Usenix
Summer Conference, 1987.

38. M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for high throughput com-
puting. SPEEDUP, 11, 1997. Available from http://www.cs.wisc.edu/condor/doc/
htc mech.ps.

39. A. Marzetta and A. Brüngger. A dynamic-programming bound for the quadratic assignment problem.
In Computing and Combinatorics: 5th Annual International Conference, COCOON’99, volume 1627 of
Lecture Notes in Computer Science, pages 339–348. Springer, 1999.

40. T. Mautor and C. Roucairol. A new exact algorithm for the solution of quadratic assignment problems.
Discrete Applied Mathematics, 55:281–293, 1994.

41. G.G.L Meyer. Accelerated Frank-Wolfe algorithms. SIAM Journal on Control, 12:655–663, 1974.
42. C.E. Nugent, T.E. Vollman, and J. Ruml. An experimental comparison of techniques for the assignment

of facilities to locations. Operations Research, 16:150–173, 1968.
43. M.W. Padberg and M.P. Rijal. Location, Scheduling,Design and Integer Programming. Kluwer, 1996.
44. P.M. Pardalos, F. Rendl, and H. Wolkowicz. The quadratic assignment problem: A survey and recent

developments. In P.M. Pardalos and H.Wolkowicz, editors,Quadratic assignment and related problems,
volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 1–42.
AMS, 1994.

45. M.G.C. Resende, P.M. Pardalos, and Y. Li. Algorithm 754: Fortran subroutines for approximate solution
of dense quadratic assignment problems using GRASP. ACM Transactions on Mathematical Software,
22:104–118, 1996.

46. M.G.C. Resende,K.G. Ramakrishnan, andZ. Drezner. Computing lower bounds for the quadratic assign-
ment problem with an interior point algorithm for linear programming. Operations Research, 43:781–
791, 1995.

47. L. Steinberg. The backboard wiring problem: A placement algorithm. SIAM Review, 3:37–50, 1961.
48. É.D. Taillard. Robust taboo search for the quadratic assignment problem. Parallel Computing, 17:443–

455, 1991.
49. U.W. Thonemann and A. Bölte. An improved simulating annealing algorithm for the quadratic as-

signment problem. Working Paper, School of Business, Dept. of Production and Operations Research,
University of Paderborn, Germany, 1994.

50. M. van Steen, P. Homburg, and A. Tanenbaum. Globe: A wide-area distributed system. IEEE Concur-
rency, 7:70–78, 1999.

51. Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relaxations for the
quadratic assignment problem. J. Combinatorial Optimization, 2:71–109, 1998.

